Sheet: (0, 0) Dialog Box Curve Fitting and MO Calculation Demo with XLMATH v2.0 (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7) (0, 8) (0, 9) (1, 0) Copyright 1992 Roy Kari (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) (1, 8) (1, 9) (2, 0) This worksheet demonstrates the dialog box commands in XLMATH.XLL. (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (2, 7) (2, 8) (2, 9) (3, 0) Input values are hi-lited in green & output in magenta (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6) (3, 7) (3, 8) (3, 9) (3, 13) Name (3, 14) Definition (3, 15) Explanation (3, 16) (3, 17) (3, 18) (4, 0) (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6) (4, 7) (4, 8) (4, 9) (4, 10) For defined names see => (4, 13) CustomFitMacro (4, 14) ="[XLMATH.XLW]XLMCFIT.XLM!Example4b" (4, 15) Name of CustomFitMacro (5, 0) Polynomial Curve Fitting (view Polyde.xlc) (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6) (5, 7) (5, 8) (5, 9) (5, 13) CustomFitMacro1 (5, 14) ="[XLMATH.XLW]XLMCFIT.XLM!Example1" (5, 15) Name of CustomFitMacro for Example 1 (6, 0) (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) (6, 7) (6, 8) (6, 9) (6, 13) CustomFitMacro2 (6, 14) ="[XLMATH.XLW]XLMCFIT.XLM!Example2" (6, 15) Name of CustomFitMacro for Example 2 (7, 0) (7, 1) (7, 2) (7, 3) (7, 4) (7, 5) (7, 6) Double click for Notes: (7, 7) (7, 8) (7, 9) (7, 12) Note: (7, 13) CustomFitMacro3 (7, 14) ="[XLMATH.XLW]XLMCFIT.XLM!Example3" (7, 15) Name of CustomFitMacro for Example 3 (8, 0) 3 (8, 1) 2-Jan-00 (8, 2) Order <= 18 (8, 3) 3.56133117063718 (8, 4) 1.23531885161779 (8, 5) 0.681950334438256 (8, 6) scale vector (8, 8) 0.000128205386189733 (8, 13) CustomFitMacro4a (8, 14) ="[XLMATH.XLW]XLMCFIT.XLM!Example4a" (8, 15) Name of CustomFitMacro for Example 4a (9, 0) 4 (9, 1) 0.584433751929043 (9, 2) 56.34% (9, 3) 0 (9, 4) 0 (9, 5) 0 (9, 8) 0.000440732868449617 (9, 9) For horizonatl see => (9, 10) (9, 11) (9, 13) CustomFitMacro4b (9, 14) ="[XLMATH.XLW]XLMCFIT.XLM!Example4b" (9, 15) Name of CustomFitMacro for Example 4b (10, 0) 5 (10, 1) 0.5149148475261 (10, 2) 53.74% (10, 3) (10, 4) 0 (10, 5) 0 (10, 8) 0.00050435682497974 (10, 12) Index (10, 13) 0 (10, 14) 1 (10, 15) 2 (10, 16) 3 (10, 17) 4 (10, 18) 5 (10, 19) 6 (10, 20) 7 (10, 21) 8 (10, 22) 9 (10, 23) 10 (10, 24) 11 (10, 25) 12 (10, 26) 13 (10, 27) 14 (10, 28) 15 (10, 29) 16 (10, 30) 17 (10, 31) 18 (10, 32) 19 (11, 0) Index (11, 1) IndVar (11, 2) DepVar (11, 3) Yest (11, 4) Resid (11, 5) (11, 6) For Order 2 (11, 7) (11, 8) 0.000649246585351449 (11, 12) IndVarH (11, 13) IndVarH (11, 14) 2 (11, 15) 2.1 (11, 16) 2.2 (11, 17) 2.3 (11, 18) 2.4 (11, 19) 2.5 (11, 20) 2.6 (11, 21) 2.7 (11, 22) 2.8 (11, 23) 2.9 (11, 24) 3 (11, 25) 3.1 (11, 26) 3.2 (11, 27) 3.3 (11, 28) 3.4 (11, 29) 3.5 (11, 30) 3.6 (11, 31) 3.7 (11, 32) 3.8 (11, 33) 3.9 (12, 0) 0 (12, 1) 200.00% (12, 2) 41484.15% (12, 3) 518.524791506787 (12, 4) 103.683294763031 (12, 5) 1385.47624400387 (12, 6) polynomial (12, 7) (12, 8) 0.000203895101169989 (12, 12) DepVarH (12, 13) DepVarH (12, 14) 414.841496743757 (12, 15) 573.596586386981 (12, 16) 432.314110195465 (12, 17) 384.33161237033 (12, 18) 889.992238606772 (12, 19) 884.364063025714 (12, 20) 365.843122938471 (12, 21) 412.530904761478 (12, 22) 743.297600023327 (12, 23) 812.530967058601 (12, 24) 397.261868835521 (12, 25) 784.136898881052 (12, 26) 699.318422419825 (12, 27) 1189.58915206698 (12, 28) 1142.2219582288 (12, 29) 1155.84057659792 (12, 30) 674.155962081212 (12, 31) 645.668253121156 (12, 32) 924.644884994502 (12, 33) 1807.03063415221 (13, 0) 1 (13, 1) 210.00% (13, 2) 57359.66% (13, 3) 519.384577721424 (13, 4) -54.2120086655574 (13, 5) -854.49819138655 (13, 6) coefficients (13, 7) (13, 8) 0.000497121082491684 (13, 12) Yest (13, 13) (13, 14) 518.524791506787 (13, 15) 519.384577721424 (13, 16) 524.454588587441 (13, 17) 533.734824104838 (13, 18) 547.225284273615 (13, 19) 564.925969093773 (13, 20) 586.83687856531 (13, 21) 612.958012688228 (13, 22) 643.289371462525 (13, 23) 677.830954888203 (13, 24) 716.582762965261 (13, 25) 759.544795693699 (13, 26) 806.717053073517 (13, 27) 858.099535104714 (13, 28) 913.692241787292 (13, 29) 973.495173121251 (13, 30) 1037.50832910659 (13, 31) 1105.73170974331 (13, 32) 1178.16531503141 (13, 33) 1254.80914497088 (14, 0) 2 (14, 1) 220.00% (14, 2) 43231.41% (14, 3) 524.454588587441 (14, 4) 92.1404783919761 (14, 5) 210.511232569005 (14, 6) (14, 7) (14, 8) 0.000100226837298003 (14, 12) Resid (14, 13) (14, 14) 103.683294763031 (14, 15) -54.2120086655574 (14, 16) 92.1404783919761 (14, 17) 149.403211734508 (14, 18) -342.766954333157 (14, 19) -319.438093931941 (14, 20) 220.993755626839 (14, 21) 200.42710792675 (14, 22) -100.008228560802 (14, 23) -134.700012170398 (14, 24) 319.320894129739 (14, 25) -24.5921031873528 (14, 26) 107.398630653692 (14, 27) -331.489616962264 (14, 28) -228.529716441505 (14, 29) -182.34540347667 (14, 30) 363.352367025377 (14, 31) 460.063456622152 (14, 32) 253.520430036904 (14, 33) -552.221489181321 (15, 0) 3 (15, 1) 230.00% (15, 2) 38433.16% (15, 3) 533.734824104838 (15, 4) 149.403211734508 (15, 5) 1845.75154329939 (15, 6) standard (15, 7) (15, 8) 6.31207717125433e-06 (15, 12) (15, 13) (15, 14) 1385.47624400387 (15, 15) -854.49819138655 (15, 16) 210.511232569005 (15, 17) 1845.75154329939 (15, 18) 1284.31115129902 (15, 19) 216.859076806686 (15, 20) 287.336230921233 (15, 21) 0.434047200030677 (15, 22) 0.65882258615706 (15, 23) 0 (15, 24) 0 (15, 25) 0 (15, 26) 0 (15, 27) 0 (15, 28) 0 (15, 29) 0 (15, 30) 0 (15, 31) 0 (15, 32) 0 (15, 33) 0 (16, 0) 4 (16, 1) 240.00% (16, 2) 88999.22% (16, 3) 547.225284273615 (16, 4) -342.766954333157 (16, 5) 1284.31115129902 (16, 6) errors of (16, 7) (16, 8) 6.91392005858091e-05 (16, 13) out3 (16, 14) =$C$77 (16, 15) Output range for Examle 3 (17, 0) 5 (17, 1) 250.00% (17, 2) 88436.41% (17, 3) 564.925969093773 (17, 4) -319.438093931941 (17, 5) 216.859076806686 (17, 6) coefficients (17, 7) (17, 8) 0.000107264328773312 (17, 13) out4a (17, 14) =$G$129 (17, 15) Output range for Examle 4a (18, 0) 6 (18, 1) 260.00% (18, 2) 36584.31% (18, 3) 586.83687856531 (18, 4) 220.993755626839 (18, 5) 287.336230921233 (18, 6) see (18, 7) (18, 8) 0.000503510899300901 (18, 13) out4b (18, 14) =$M$129 (18, 15) Output range for Examle 4b (19, 0) 7 (19, 1) 270.00% (19, 2) 41253.09% (19, 3) 612.958012688228 (19, 4) 200.42710792675 (19, 5) 0.434047200030677 (19, 6) rsqrval (19, 7) (19, 8) 0.000225659385238547 (19, 13) parm1 (19, 14) =$A$22:$C$24 (19, 15) Range of parameters for Example 1 (20, 0) 8 (20, 1) 280.00% (20, 2) 74329.76% (20, 3) 643.289371462525 (20, 4) -100.008228560802 (20, 5) 0.65882258615706 (20, 6) rval (20, 7) (20, 8) 9.6398551381106e-05 (20, 13) parm2 (20, 14) =$A$55:$B$57 (20, 15) Range of parameters for Example 2 (21, 0) 9 (21, 1) 290.00% (21, 2) 81253.10% (21, 3) 677.830954888203 (21, 4) -134.700012170398 (21, 5) 0 (21, 6) cferror (21, 7) (21, 8) 0.00394964082271768 (21, 9) SSQ (21, 13) parm3 (21, 14) =$A$85:$C$87 (21, 15) Range of parameters for Example 3 (22, 0) 10 (22, 1) 300.00% (22, 2) 39726.19% (22, 3) 716.582762965261 (22, 4) 319.320894129739 (22, 5) 0 (22, 6) empty (22, 7) (22, 8) 0 (22, 9) SSQ as % of mean Y value (22, 13) parm4a (22, 14) =$G$152:$J$154 (22, 15) Range of parameters for Example 4a (23, 0) 11 (23, 1) 310.00% (23, 2) 78413.69% (23, 3) 759.544795693699 (23, 4) -24.5921031873528 (23, 5) 0 (23, 6) (23, 7) (23, 13) parm4b (23, 14) =$G$152:$H$154 (23, 15) Range of parameters for Example 4b (24, 0) 12 (24, 1) 320.00% (24, 2) 69931.84% (24, 3) 806.717053073517 (24, 4) 107.398630653692 (24, 5) 0 (24, 6) (24, 7) (25, 0) 13 (25, 1) 330.00% (25, 2) 118958.92% (25, 3) 858.099535104714 (25, 4) -331.489616962264 (25, 5) 0 (25, 6) (25, 7) (26, 0) 14 (26, 1) 340.00% (26, 2) 114222.20% (26, 3) 913.692241787292 (26, 4) -228.529716441505 (26, 5) 0 (26, 6) (26, 7) (27, 0) 15 (27, 1) 350.00% (27, 2) 115584.06% (27, 3) 973.495173121251 (27, 4) -182.34540347667 (27, 5) 0 (27, 6) (27, 7) (28, 0) 16 (28, 1) 360.00% (28, 2) 67415.60% (28, 3) 1037.50832910659 (28, 4) 363.352367025377 (28, 5) 0 (28, 6) (28, 7) (29, 0) 17 (29, 1) 370.00% (29, 2) 64566.83% (29, 3) 1105.73170974331 (29, 4) 460.063456622152 (29, 5) 0 (29, 6) (29, 7) (30, 0) 18 (30, 1) 380.00% (30, 2) 92464.49% (30, 3) 1178.16531503141 (30, 4) 253.520430036904 (30, 5) 0 (30, 6) (30, 7) (31, 0) 19 (31, 1) 3 8/9 (31, 2) 1807 0/2 (31, 3) 1254.80914497088 (31, 4) -552.221489181321 (31, 5) 0 (31, 6) (31, 7) (32, 0) (32, 1) (32, 2) (32, 3) (32, 4) (32, 5) (32, 6) (32, 7) (32, 8) (32, 9) (32, 10) (32, 11) (33, 0) (33, 1) (33, 2) (34, 0) Cubic Splines (view Splinede.xlc) (34, 1) (34, 2) (35, 0) Demo function is 3*cos(x) where x is from 0 to 2*pi (35, 1) (35, 2) (35, 3) (35, 4) (35, 6) SplineX contains 100 x-values (35, 7) (35, 8) (35, 9) (35, 10) (35, 11) (36, 0) X-values of 2.3 and 4.4 are altered (36, 1) (36, 2) (36, 3) (36, 4) (36, 6) SplineY contains interpolated Y values for the 100 x-values (36, 7) (36, 8) (36, 9) (36, 10) (36, 11) (36, 13) Note: (37, 0) (37, 1) (37, 2) (37, 9) For row vectors see => (37, 10) (37, 11) Horizontal (38, 0) Ret4a (38, 1) 3.67557190045051 (38, 11) below (39, 0) Index (39, 1) IndVarS (39, 2) DepVarS (39, 3) CoefS (39, 4) (39, 5) (39, 6) (39, 7) SplineX (39, 8) Spline-Y (39, 9) Original-Y (39, 10) Diff (39, 13) Index (39, 14) 0 (39, 15) 1 (39, 16) 2 (39, 17) 3 (39, 18) 4 (39, 19) 5 (39, 20) 6 (39, 21) 7 (39, 22) 8 (39, 23) 9 (39, 24) 10 (40, 0) 0 (40, 1) 0/2 (40, 2) 300.00% (40, 3) 3 (40, 4) -0.808900136250274 (40, 5) 0 (40, 6) -0.260842636943966 (40, 7) 0 (40, 8) 3 (40, 9) 3 (40, 10) 0 (40, 11) IndVarSH (40, 12) 0 (40, 13) 0.628318530717959 (40, 14) 1.25663706143592 (40, 15) 1.88495559215388 (40, 16) 2.3 (40, 17) 3.14159265358979 (40, 18) 3.76991118430775 (40, 19) 4.4 (40, 20) 5.02654824574367 (40, 21) 5.65486677646163 (40, 22) 6.28318530717959 (40, 23) 5.65486677646163 (40, 24) 6.28318530717959 (41, 0) 1 (41, 1) 5/8 (41, 2) 242.71% (41, 3) 2.42705098312484 (41, 4) -1.11782977275915 (41, 5) -0.491676787179693 (41, 6) -2.43313890322795 (41, 7) 0.0628318530717959 (41, 8) 2.9491106034176 (41, 9) (41, 10) 0.0449695818672162 (41, 11) DepVarSH (41, 12) 3 (41, 13) 2.42705098312484 (41, 14) 0.927050983124842 (41, 15) -0.927050983124842 (41, 16) 1.5 (41, 17) -3 (41, 18) -2.42705098312484 (41, 19) 2 (41, 20) 0.927050983124842 (41, 21) 2.42705098312484 (41, 22) 3 (41, 23) 2.42705098312484 (41, 24) 3 (42, 0) 2 (42, 1) 5/4 (42, 2) 92.71% (42, 3) 0.927050983124842 (42, 4) -4.61738325710813 (42, 5) -5.07803556930637 (42, 6) 12.3032088681329 (42, 7) 0.125663706143592 (42, 8) 2.89783299440458 (42, 9) (42, 10) 0.0785111095388498 (42, 12) 3-Jan-00 (42, 13) -0.80890. (42, 14) 0.00000. (42, 15) -0.26084. (42, 16) 0 (42, 17) -0.260842636943966 (43, 0) 3 (43, 1) 17/9 (43, 2) -92.71% (43, 3) -0.927050983124842 (43, 4) 3.57270557430518 (43, 5) 18.1129667881179 (43, 6) -30.4344865161049 (43, 7) 0.188495559215388 (43, 8) 2.84577896053034 (43, 9) (43, 10) 0.101082791655723 (43, 12) 2.42705. (43, 13) -1.11783. (43, 14) -0.49167. (43, 15) -2.43313. (43, 16) -0.491676787179693 (43, 17) -2.43313890322795 (44, 0) 4 (44, 1) 16/7 (44, 2) 150.00% (44, 3) 1.5 (44, 4) 2.87997291367762 (44, 5) -19.782023514415 (44, 6) 11.8900002347093 (44, 7) 0.251327412287183 (44, 8) 2.79256028936426 (44, 9) (44, 10) 0.11318919402163 (44, 12) 0.92705. (44, 13) -4.61738. (44, 14) -5.07803. (44, 15) 12.30320. (44, 16) -5.07803556930637 (44, 17) 12.3032088681329 (45, 0) 5 (45, 1) 22/7 (45, 2) -300.00% (45, 3) -3 (45, 4) -5.15255471281126 (45, 5) 10.2375870317219 (45, 6) -0.932241638944584 (45, 7) 0.314159265358979 (45, 8) 2.73778876847573 (45, 9) (45, 10) 0.115380780409728 (45, 12) -0.92705. (45, 13) 3.57270. (45, 14) 18.11296. (45, 15) -30.43448. (45, 16) 18.1129667881179 (45, 17) -30.4344865161049 (46, 0) 6 (46, 1) 34/9 (46, 2) -242.71% (46, 3) -2.42705098312484 (46, 4) 6.60827382901347 (46, 5) 8.48035294115462 (46, 6) -12.406617132705 (46, 7) 0.376991118430775 (46, 8) 2.68107618543414 (46, 9) (46, 10) 0.108253272230619 (46, 12) 1.50000. (46, 13) 2.87997. (46, 14) -19.78202. (46, 15) 11.89000. (46, 16) -19.782023514415 (46, 17) 11.8900002347093 (46, 19) NOTE: (46, 20) (46, 21) (46, 22) (47, 0) 7 (47, 1) 22/5 (47, 2) 200.00% (47, 3) 2 (47, 4) 2.518300407539 (47, 5) -14.9714591465251 (47, 6) 13.1178145780794 (47, 7) 0.439822971502571 (47, 8) 2.62203432780886 (47, 9) (47, 10) 0.0924468295891971 (47, 12) -3.00000. (47, 13) -5.15255. (47, 14) 10.23758. (47, 15) -0.93224. (47, 16) 10.2375870317219 (47, 17) -0.932241638944584 (47, 19) Returned array is always (47, 20) (47, 21) (47, 22) (48, 0) 8 (48, 1) 10/2 (48, 2) 92.71% (48, 3) 0.927050983124842 (48, 4) -0.793688227772506 (48, 5) 9.685371989134 (48, 6) -7.35714980429719 (48, 7) 0.502654824574367 (48, 8) 2.5602749831693 (48, 9) (48, 10) 0.0686450569622945 (48, 12) -2.42705. (48, 13) 6.60827. (48, 14) 8.48035. (48, 15) -12.40661. (48, 16) 8.48035294115462 (48, 17) -12.406617132705 (48, 19) an N x 4 array regardless of the input (48, 20) (48, 21) (48, 22) (49, 0) 9 (49, 1) 17/3 (49, 2) 242.71% (49, 3) 2.42705098312484 (49, 4) 2.66385019701075 (49, 5) -4.18252867678979 (49, 6) 2.218900378449 (49, 7) 0.565486677646163 (49, 8) 2.49540993908483 (49, 9) (49, 10) 0.0375738374212173 (49, 12) 2.00000. (49, 13) 2.51830. (49, 14) -14.97145. (49, 15) 13.11781. (49, 16) -14.9714591465251 (49, 17) 13.1178145780794 (50, 0) 10 (50, 1) 6.28318530717959 (50, 2) 3 (50, 3) (50, 4) (50, 5) (50, 6) (50, 7) 0.628318530717959 (50, 8) 2.42705098312484 (50, 9) 2.42705098312484 (50, 10) 0 (50, 12) 0.92705. (50, 13) -0.79368. (50, 14) 9.68537. (50, 15) -7.35715. (50, 16) 9.685371989134 (50, 17) -7.35714980429719 (51, 0) 11 (51, 1) 0.334 (51, 2) 34.04% (51, 3) 0 (51, 4) 0 (51, 7) 0.691150383789754 (51, 8) 2.35427106430622 (51, 9) (51, 10) -0.0427313359788473 (51, 12) 2.42705. (51, 13) 2.66385. (51, 14) -4.18252. (51, 15) 2.21890. (51, 16) -4.18252867678979 (51, 17) 2.218900378449 (52, 0) 12 (52, 1) 0.384 (52, 2) 0.377526082034109 (52, 3) 0 (52, 4) 0 (52, 7) 0.75398223686155 (52, 8) 2.27398777743577 (52, 9) (52, 10) -0.08708189517154 (52, 13) 10 (53, 0) 13 (53, 7) 0.816814089933346 (53, 8) 2.18257987876783 (53, 9) (53, 10) -0.128938560981769 (54, 0) 14 (54, 1) 4 (54, 2) Initial parameters (54, 7) 0.879645943005142 (54, 8) 2.07642612455671 (54, 9) (54, 10) -0.164154155310644 (55, 0) 15 (55, 1) 10000 (55, 2) Upper bounds (55, 7) 0.942477796076938 (55, 8) 1.95190527105673 (55, 9) (55, 10) -0.188549514179306 (56, 0) 16 (56, 1) 1e-06 (56, 2) Lower bounds (56, 7) 1.00530964914873 (56, 8) 1.80539607452219 (56, 9) (56, 10) -0.197915689585197 (57, 0) 17 (57, 7) 1.06814150222053 (57, 8) 1.63327729120741 (57, 9) (57, 10) -0.188016268902268 (58, 0) 18 (58, 7) 1.13097335529233 (58, 8) 1.43192767736672 (58, 9) (58, 10) -0.154589802671503 (59, 0) 19 (59, 7) 1.19380520836412 (59, 8) 1.19772598925443 (59, 9) (59, 10) -0.0933523312003917 (60, 0) 20 (60, 7) 1.25663706143592 (60, 8) 0.927050983124842 (60, 9) 0.927050983124842 (60, 10) 0 (61, 0) 21 (61, 7) 1.31946891450771 (61, 8) 0.619936769442335 (61, 9) (61, 10) 0.126132892052229 (62, 0) 22 (62, 7) 1.38230076757951 (62, 8) 0.291038875511457 (62, 9) (62, 10) 0.271105068245717 (63, 0) 23 (63, 7) 1.4451326206513 (63, 8) -0.0413318171531903 (63, 9) (63, 10) 0.417331517846104 (64, 0) 24 (64, 7) 1.5079644737231 (64, 8) -0.358864427037009 (64, 9) (64, 10) 0.54723598562495 (65, 0) 25 (65, 7) 1.5707963267949 (65, 8) -0.643248072625396 (65, 9) (65, 10) 0.643248072625397 (66, 0) 26 (66, 7) 1.63362817986669 (66, 8) -0.876171872403752 (66, 9) (66, 10) 0.687800313815811 (67, 0) 27 (67, 7) 1.69646003293849 (67, 8) -1.03932494485747 (67, 9) (67, 10) 0.663325244164562 (68, 0) 28 (68, 7) 1.75929188601028 (68, 8) -1.11439640847196 (68, 9) (68, 10) 0.55225246471479 (69, 0) 29 (69, 7) 1.82212373908208 (69, 8) -1.08307538173262 (69, 9) (69, 10) 0.337005720238055 (70, 0) 30 (70, 7) 1.88495559215388 (70, 8) -0.927050983124843 (70, 9) -0.927050983124842 (70, 10) 1.22124532708767e-15 (71, 0) 31 (71, 7) 1.94778744522567 (71, 8) -0.638613425596126 (71, 9) (71, 10) -0.465760232457907 (72, 0) 32 (72, 7) 2.01061929829747 (72, 8) -0.25245729994235 (72, 9) (72, 10) -1.02488057475287 (73, 0) 33 (73, 5) Test Function (73, 6) (73, 7) 2.07345115136926 (73, 8) 0.186121708578504 (73, 9) (73, 10) -1.63138273088365 (74, 0) 34 (74, 5) 131.824283938055 (74, 6) (74, 7) 2.13628300444106 (74, 8) 0.63182791470846 (74, 9) (74, 10) -2.23930829964545 (75, 0) 35 (75, 1) DepVar (75, 2) Fitted (75, 6) Deviations (75, 7) 2.19911485751286 (75, 8) 1.03936563318954 (75, 9) (75, 10) -2.80272139006696 (76, 0) 36 (76, 1) 127 (76, 2) $97.39 (76, 3) 523 2/7 (76, 4) -156 2/2 (76, 5) 1/5 (76, 6) 876.631699866956 (76, 7) 2.26194671058465 (76, 8) 1.36343917876376 (76, 9) (76, 10) -3.27571114800983 (77, 0) 37 (77, 1) 151 (77, 2) 23761.55% (77, 3) 158.95403078415 (77, 4) 180.767636151443 (77, 5) 0.170089466783302 (77, 6) 7502.24790037734 (77, 7) 2.3 (77, 8) 1.5 (77, 9) 1.5 (77, 10) -3.49882806383947 (78, 0) 38 (78, 1) 379 (78, 2) 33167.33% (78, 3) 2.43047593661772 (78, 4) 0.563443495276201 (78, 5) 0.00608056810607346 (78, 6) 2239.82094978945 (78, 7) 2.38761041672824 (78, 8) 1.60847258577238 (78, 9) (78, 10) -3.79537846803661 (79, 0) 39 (79, 1) 421 (79, 2) 39476.44% (79, 3) 2.44948974278319 (79, 4) 3.6437504585389 (79, 5) 2339.53195241212 (79, 6) 688.307750056773 (79, 7) 2.45044226980004 (79, 8) 1.52603031921609 (79, 9) (79, 10) -3.83757004754345 (80, 0) 40 (80, 1) 460 (80, 2) 43708.40% (80, 3) 0 (80, 4) 0 (80, 5) 0 (80, 6) 525.141759703495 (80, 7) 2.51327412287183 (80, 8) 1.32976587154036 (80, 9) (80, 10) -3.7568168546652 (81, 0) 41 (81, 1) 426 (81, 2) 465.470787421812 (81, 3) 0 (81, 4) 0 (81, 5) 0 (81, 6) 1557.94305969789 (81, 7) 2.57610597594363 (81, 8) 1.0373751453215 (81, 9) (81, 10) -3.57035892182754 (82, 0) 42 (82, 6) 13390.0931194919 (82, 7) 2.63893782901543 (82, 8) 0.6665540431358 (82, 9) (82, 10) -3.29547408326739 (83, 0) 43 (83, 6) 0 (83, 7) 2.70176968208722 (83, 8) 0.234998467559568 (83, 9) (83, 10) -2.94947962495763 (84, 0) 44 (84, 1) -140 (84, 2) -0.13 (84, 3) Initial values (84, 7) 2.76460153515902 (84, 8) -0.239595678830905 (84, 9) (84, 10) -2.54973377883385 (85, 0) 45 (85, 1) 18-May-27 (85, 2) 10000 (85, 3) Upper bounds (85, 7) 2.82743338823081 (85, 8) -0.739532493459317 (85, 9) (85, 10) -2.11363705542614 (86, 0) 46 (86, 1) -1000 (86, 2) -1000 (86, 3) Lower bounds (86, 7) 2.89026524130261 (86, 8) -1.24711607374937 (86, 9) (86, 10) -1.65863340963653 (87, 0) 47 (87, 7) 2.95309709437441 (87, 8) -1.74465051712476 (87, 9) (87, 10) -1.2022112350613 (88, 0) 48 (88, 7) 3.0159289474462 (88, 8) -2.2144399210092 (88, 9) (88, 10) -0.761904182934237 (89, 0) 49 (89, 7) 3.078760800518 (89, 8) -2.63878838282638 (89, 9) (89, 10) -0.355291802458438 (90, 0) 50 (90, 7) 3.14159265358979 (90, 8) -3 (90, 9) -3 (90, 10) 0 (91, 0) 51 (91, 7) 3.20442450666159 (91, 8) -3.28355942978734 (91, 9) (91, 10) 0.289479244502525 (92, 0) 52 (92, 7) 3.26725635973339 (92, 8) -3.48767356877995 (92, 9) (92, 10) 0.511329464836512 (93, 0) 53 (93, 7) 3.33008821280518 (93, 8) -3.61372987340294 (93, 9) (93, 10) 0.666868121216872 (94, 0) 54 (94, 7) 3.39292006587698 (94, 8) -3.66311580008144 (94, 9) (94, 10) 0.757366316695543 (95, 0) 55 (95, 7) 3.45575191894877 (95, 8) -3.63721880524056 (95, 9) (95, 10) 0.784049256355104 (96, 0) 56 (96, 7) 3.51858377202057 (96, 8) -3.53742634530544 (96, 9) (96, 10) 0.748096887640686 (97, 0) 57 (97, 7) 3.58141562509236 (97, 8) -3.36512587670119 (97, 9) (97, 10) 0.650644719303128 (98, 0) 58 (98, 7) 3.64424747816416 (98, 8) -3.12170485585292 (98, 9) (98, 10) 0.49278481572133 (99, 0) 59 (99, 7) 3.70707933123596 (99, 8) -2.80855073918577 (99, 9) (99, 10) 0.275566962679722 (100, 0) 60 (100, 7) 3.76991118430775 (100, 8) -2.42705098312485 (100, 9) -2.42705098312484 (100, 10) 3.10862446895044e-15 (101, 0) 61 (101, 7) 3.83274303737955 (101, 8) -1.98143926538562 (101, 9) (101, 10) -0.330100462941753 (102, 0) 62 (102, 7) 3.89557489045134 (102, 8) -1.48733414884494 (102, 9) (102, 10) -0.699571733419299 (103, 0) 63 (103, 7) 3.95840674352314 (103, 8) -0.963200417669988 (103, 9) (103, 10) -1.09044090011608 (104, 0) 64 (104, 7) 4.02123859659494 (104, 8) -0.427502856027976 (104, 9) (104, 10) -1.48476911321809 (105, 0) 65 (105, 7) 4.08407044966673 (105, 8) 0.101293751913907 (105, 9) (105, 10) -1.86464950879133 (106, 0) 66 (106, 7) 4.14690230273853 (106, 8) 0.604724621988479 (106, 9) (106, 10) -2.21220500692547 (107, 0) 67 (107, 7) 4.20973415581032 (107, 8) 1.06432497002853 (107, 9) (107, 10) -2.50958599233368 (108, 0) 68 (108, 7) 4.27256600888212 (108, 8) 1.46163001186688 (108, 9) (108, 10) -2.7389678865621 (109, 0) 69 (109, 1) (109, 7) 4.33539786195391 (109, 8) 1.77817496333633 (109, 9) (109, 10) -2.88254862139036 (110, 0) 70 (110, 1) DepVar (110, 2) Fitted (110, 3) Diff^2 (110, 7) 4.4 (110, 8) 2 (110, 9) 2 (110, 10) -2.92199860993526 (111, 0) 71 (111, 1) 127.0 (111, 2) 97.391981425188 (111, 3) 25-May-02 (111, 7) 4.46106156809751 (111, 8) 2.10093657979647 (111, 9) (111, 10) -2.84700624129104 (112, 0) 72 (112, 1) 151.0 (112, 2) 237.615573142709 (112, 3) 15-Jul-20 (112, 7) 4.5238934211693 (112, 8) 2.10714155081519 (112, 9) (112, 10) -2.66928549457236 (113, 0) 73 (113, 1) 379.0 (113, 2) 331.67330803301 (113, 3) 16-Feb-06 (113, 7) 4.5867252742411 (113, 8) 2.03363307195448 (113, 9) (113, 10) -2.4096327726474 (114, 0) 74 (114, 1) 421.0 (114, 2) 394.764385535261 (114, 3) 18-Nov-01 (114, 7) 4.64955712731289 (114, 8) 1.89993440345029 (114, 9) (114, 10) -2.08830596203823 (115, 0) 75 (115, 1) 460.0 (115, 2) 437.083967917693 (115, 3) 8-Jun-01 (115, 7) 4.71238898038469 (115, 8) 1.72556880553857 (115, 9) (115, 10) -1.72556880553857 (116, 0) 76 (116, 1) 1-Mar-01 (116, 2) 465.4706609958 (116, 3) 1557.9330794454 (116, 7) 4.77522083345649 (116, 8) 1.53005953845525 (116, 9) (116, 10) -1.34168797986731 (117, 0) 77 (117, 2) SumSq (117, 3) 13390.0931194899 (117, 7) 4.83805268652828 (117, 8) 1.33292986243627 (117, 9) (117, 10) -0.956930161743357 (118, 0) 78 (118, 7) 4.90088453960008 (118, 8) 1.15370303771758 (118, 9) (118, 10) -0.59155909396041 (119, 0) 79 (119, 3) Initial (119, 7) 4.96371639267187 (119, 8) 1.01190232453513 (119, 9) (119, 10) -0.26583266304056 (120, 0) 80 (120, 1) -156.94766022401 (120, 2) -0.199664718818765 (120, 3) 400 (120, 4) -140 (120, 5) -0.13 (120, 7) 5.02654824574367 (120, 8) 0.927050983124842 (120, 9) 0.927050983124842 (120, 10) 0 (121, 0) 81 (121, 1) (121, 7) 5.08938009881546 (121, 8) 0.9135934544374 (121, 9) (121, 10) 0.190780203616633 (122, 0) 82 (122, 1) (122, 7) 5.15221195188726 (122, 8) 0.965658902282371 (122, 9) (122, 10) 0.311678972412845 (123, 0) 83 (123, 5) Y=a*exp(-k1*x) + b*exp(-k2*x) (123, 7) 5.21504380495906 (123, 8) 1.07229767118406 (123, 9) (123, 10) 0.37296335112109 (124, 0) 84 (124, 7) 5.27787565803085 (124, 8) 1.22256010566675 (124, 9) (124, 10) 0.384920279270239 (125, 0) 85 (125, 7) 5.34070751110265 (125, 8) 1.40549655025475 (125, 9) (125, 10) 0.357859206622665 (126, 0) 86 (126, 2) 4 parameters (126, 3) (126, 4) 2 parameters (126, 5) (126, 7) 5.40353936417444 (126, 8) 1.61015734947236 (126, 9) (126, 10) 0.302114619773705 (127, 0) 87 (127, 1) DepVar (127, 2) Calulated (127, 3) Dev^2 (127, 4) Calulated (127, 5) Dev^2 (127, 6) 4 Parameter Custom Fit (127, 7) 5.46637121724624 (127, 8) 1.82559284784388 (127, 9) (127, 10) 0.228048469942187 (127, 11) Dev^2 (127, 12) 2 Parameter CustomFit (127, 13) (127, 14) (127, 15) Dev^2 (128, 0) 88 (128, 1) 71.6158 (128, 2) 72.6621304059765 (128, 3) 1.09480731847099 (128, 4) 72.6515024745227 (128, 5) 1.07267961573243 (128, 6) 7270.33% (128, 7) 5.52920307031804 (128, 8) 2.0408533898936 (128, 9) (128, 10) 0.146052492370635 (128, 11) 1 (128, 12) 7265.15% (128, 13) 79.8976603828038 (128, 14) 1.06823073381798 (128, 15) 1.07267426064765 (128, 16) Final Parameters (129, 0) 89 (129, 1) 70.4396 (129, 2) 70.293118971964 (129, 3) 0.0214566915744771 (129, 4) 70.2850202809686 (129, 5) 0.023894889535832 (129, 6) 7032.26% (129, 7) 5.59203492338983 (129, 8) 2.24498932014582 (129, 9) (129, 10) 0.0665504081815471 (129, 11) 0 (129, 12) 7028.50% (129, 13) 0.652709069620837 (129, 14) 0.0163007969460103 (129, 15) 0.0238907800291452 (129, 16) Std. Deviations (130, 0) 90 (130, 1) 66.7535 (130, 2) 66.278657385127 (130, 3) 0.225475508899412 (130, 4) 66.2745262755079 (130, 5) 0.229415828753841 (130, 6) 6629.04% (130, 7) 5.65486677646163 (130, 8) 2.42705098312484 (130, 9) 2.42705098312484 (130, 10) 0 (130, 11) 0 (130, 12) 6627.46% (130, 13) 1.71750385221709 (130, 14) 0.282496147782912 (130, 15) 0.229378511052069 (130, 16) Eigenvalues (131, 0) 91 (131, 1) 64.1718 (131, 2) 64.5305601920555 (131, 3) 0.128708875403678 (131, 4) 64.5280268817227 (131, 5) 0.126897591261842 (131, 6) 6453.54% (131, 7) 5.71769862953342 (131, 8) 2.57846406464673 (131, 9) (131, 10) -0.0454802881406819 (131, 11) 0 (131, 12) 6452.81% (131, 13) 2.31009239234217 (131, 14) 92.4996649634902 (131, 15) 0.126932949073928 (131, 16) Scale Vectors (132, 0) 92 (132, 1) 61.1031 (132, 2) 58.6108424727893 (132, 3) 6.21134758193831 (132, 4) 58.6131008903566 (132, 5) 6.20009556602489 (132, 6) 5859.62% (132, 7) 5.78053048260522 (132, 8) 2.7001556156946 (132, 9) (132, 10) -0.0712355755630099 (132, 11) 6 (132, 12) 5861.32% (132, 13) 0 (132, 14) 0 (132, 15) 6.19968066376578 (133, 0) 93 (133, 1) 51.9672 (133, 2) 53.2346386396225 (133, 3) 1.60640070520816 (133, 4) 53.2403633273996 (133, 5) 1.62094485823521 (133, 6) 5320.76% (133, 7) 5.84336233567702 (133, 8) 2.79542802854335 (133, 9) (133, 10) -0.0809468711452945 (133, 11) 2 (133, 12) 5324.05% (133, 13) 0 (133, 14) 0 (133, 15) 1.62122601579185 (134, 0) 94 (134, 1) 46.3415 (134, 2) 46.3284272103439 (134, 3) 0.000170897829392816 (134, 4) 46.3372364148426 (134, 5) 1.81781583940664e-05 (134, 6) 4629.28% (134, 7) 5.90619418874881 (134, 8) 2.86758369546788 (134, 9) (134, 10) -0.0782542378031206 (134, 11) 0 (134, 12) 4633.74% (134, 13) 0 (134, 14) 0 (134, 15) 1.70059144631535e-05 (135, 0) 95 (135, 1) 41.7383 (135, 2) 41.0582262015136 (135, 3) 0.462500371387736 (135, 4) 41.0682364949517 (135, 5) 0.44898510079761 (135, 6) 4102.18% (135, 7) 5.96902604182061 (135, 8) 2.91992500874306 (135, 9) (135, 10) -0.0667554598575948 (135, 11) 1 (135, 12) 4106.84% (135, 13) 0 (135, 14) 0 (135, 15) 0.44877404208858 (136, 0) 96 (136, 1) 37.2081 (136, 2) 37.8151942999241 (136, 3) 0.368563489000385 (136, 4) 37.8253935218664 (136, 5) 0.381051292138233 (136, 6) 3778.06% (136, 7) 6.0318578948924 (136, 8) 2.95575436064378 (136, 9) (136, 10) -0.050004877257892 (136, 11) 0 (136, 12) 3782.56% (136, 13) 0 (136, 14) 0 (136, 15) 0.381256490320724 (137, 0) 97 (137, 1) 32.016 (137, 2) 32.5616452590159 (137, 3) 0.297728748686558 (137, 4) 32.5711636330454 (137, 5) 0.30820665945621 (137, 6) 3253.40% (137, 7) 6.0946897479642 (137, 8) 2.97837414344495 (137, 9) (137, 10) -0.0315123912588877 (137, 11) 0 (137, 12) 3257.13% (137, 13) 0 (137, 14) 0 (137, 15) 0.308402281249502 (138, 0) 98 (138, 1) 27.6582 (138, 2) 27.7410816650925 (138, 3) 0.00686937040851073 (138, 4) 27.748773704519 (138, 5) 0.00820359595030004 (138, 6) 2772.37% (138, 7) 6.15752160103599 (138, 8) 2.99108674942145 (138, 9) (138, 10) -0.0147426454780191 (138, 11) 0 (138, 12) 2774.90% (138, 13) 0 (138, 14) 0 (138, 15) 0.00823627974292995 (139, 0) 99 (139, 1) 23.5052 (139, 2) 23.8889711620967 (139, 3) 0.147280304857041 (139, 4) 23.8942616267497 (139, 5) 0.151368949409096 (139, 6) 2388.23% (139, 7) 6.22035345410779 (139, 8) 2.99719457084817 (139, 9) (139, 10) -0.00311438556335641 (139, 11) 0 (139, 12) 2389.44% (139, 13) 0 (139, 14) 0 (139, 15) 0.151508622506022 (140, 0) (140, 1) (140, 2) (140, 3) (140, 4) (140, 5) (140, 6) (140, 7) (140, 8) (140, 9) (140, 10) (140, 11) 4 (140, 12) 2101.97% (140, 13) 0 (140, 14) 0 (140, 15) 3.54854880806548 (141, 0) Data Smoothing (view Smoothde.xlc) (141, 1) 19.5513 (141, 2) 18.2940430436484 (141, 3) 1.5806950542945 (141, 4) 18.294104237691 (141, 5) 1.58054118476763 (141, 6) 1830.59% (141, 7) 0 (141, 8) 0 (141, 9) 0 (141, 10) 0 (141, 11) 2 (141, 12) 1829.43% (141, 13) 0 (141, 14) 0 (141, 15) 1.58011238021901 (142, 0) 1.55 (142, 1) 15.3837 (142, 2) 15.2598661133617 (142, 3) 0.0153348314799508 (142, 4) 15.2560840573995 (142, 5) 0.0162858288058167 (142, 6) 1528.25% (142, 7) 0 (142, 8) 0 (142, 9) 0 (142, 10) 0 (142, 11) 0 (142, 12) 1525.62% (142, 13) 0 (142, 14) 0 (142, 15) 0.0162447549206304 (143, 0) Data Smoothing (143, 1) 13.1824 (143, 2) 12.3296008638212 (143, 3) 0.727266366667342 (143, 4) 12.3213161349579 (143, 5) 0.74146542263577 (143, 6) 1236.23% (143, 7) 0 (143, 8) 0 (143, 9) 0 (143, 10) 0 (143, 11) 1 (143, 12) 1232.15% (143, 13) Note: (143, 14) 0 (143, 15) 0.741210708463974 (144, 0) 1.98 (144, 1) 10.5895 (144, 2) 9.6504331380083 (144, 3) 0.881846571290928 (144, 4) 9.63725238328203 (144, 5) 0.906775523545045 (144, 6) 969.11% (144, 7) 0 (144, 8) 0 (144, 9) 0 (144, 10) 0 (144, 11) 1 (144, 12) 963.74% (144, 13) 0 (144, 14) 0 (144, 15) 0.906524600965044 (145, 0) (145, 1) (145, 2) Smooth (145, 3) Smooth (145, 4) (145, 5) (145, 6) 768.10% (145, 7) 0 (145, 8) 0 (145, 9) 0 (145, 10) 0 (145, 11) 0 (145, 12) 761.90% (145, 13) 0 (145, 14) 0 (145, 15) 0.0310651131427496 (146, 0) Index (146, 1) Data (146, 2) SG (146, 3) Wts (146, 4) (146, 5) Weights (146, 6) 559.80% (146, 7) 2.0 (146, 8) SmoothNum (146, 9) (146, 10) 0 (146, 11) 0 (146, 12) Index (146, 13) 0 (146, 14) 1 (146, 15) 2 (146, 16) 3 (146, 17) 4 (146, 18) 5 (146, 19) 6 (146, 20) 7 (146, 21) 8 (146, 22) 9 (146, 23) 10 (146, 24) 11 (146, 25) 12 (146, 26) 13 (146, 27) 14 (146, 28) 15 (146, 29) 16 (146, 30) 17 (146, 31) 18 (146, 32) 19 (146, 33) 20 (146, 34) 21 (146, 35) 22 (146, 36) 23 (146, 37) 24 (146, 38) 25 (146, 39) 26 (146, 40) 27 (146, 41) 28 (146, 42) 29 (146, 43) 30 (146, 44) 31 (146, 45) 32 (146, 46) 33 (146, 47) 34 (146, 48) 35 (146, 49) 36 (146, 50) 37 (146, 51) 38 (146, 52) 39 (146, 53) 40 (146, 54) 41 (146, 55) 42 (146, 56) 43 (146, 57) 44 (146, 58) 45 (146, 59) 46 (146, 60) 47 (146, 61) 48 (146, 62) 49 (146, 63) 50 (146, 64) 51 (146, 65) 52 (146, 66) 53 (146, 67) 54 (146, 68) 55 (146, 69) 56 (146, 70) 57 (146, 71) 58 (146, 72) 59 (146, 73) 60 (146, 74) 61 (146, 75) 62 (146, 76) 63 (146, 77) 64 (146, 78) 65 (146, 79) 66 (146, 80) 67 (146, 81) 68 (146, 82) 69 (146, 83) 70 (146, 84) 71 (146, 85) 72 (146, 86) 73 (146, 87) 74 (146, 88) 75 (146, 89) 76 (146, 90) 77 (146, 91) 78 (146, 92) 79 (146, 93) 80 (146, 94) 81 (146, 95) 82 (146, 96) 83 (146, 97) 84 (146, 98) 85 (146, 99) 86 (146, 100) 87 (146, 101) 88 (146, 102) 89 (146, 103) 90 (146, 104) 91 (146, 105) 92 (146, 106) 93 (146, 107) 94 (146, 108) 95 (146, 109) 96 (146, 110) 97 (146, 111) 98 (146, 112) 99 (147, 0) 0 (147, 1) 0.840672719057329 (147, 2) 0.66374887075725 (147, 3) 0.782343745326858 (147, 4) 3.6069303838014 (147, 5) 1 (147, 6) 3.67557190045051 (147, 7) 0 (147, 8) DerivNum (147, 9) (147, 10) 0 (147, 11) 2.07553552474767 (147, 12) DataH (147, 13) 0.239761648904823 (147, 14) 0.864511124855763 (147, 15) 0.902574931691035 (147, 16) -0.0014599390563655 (147, 17) 0.0795320766454871 (147, 18) 0.267618004028661 (147, 19) 0.999129250708128 (147, 20) 0.751849910638794 (147, 21) 0.707345389653313 (147, 22) 0.854868962434849 (147, 23) 0.616530116682466 (147, 24) 0.206194214279902 (147, 25) 0.982612844728572 (147, 26) 0.793846886273277 (147, 27) 0.391786749434619 (147, 28) 0.58340240419337 (147, 29) 0.800071853706369 (147, 30) 0.206861542042553 (147, 31) 0.102477371212366 (147, 32) 0.243420971953317 (147, 33) 0.882695238577128 (147, 34) 0.329099233021249 (147, 35) 0.119804885304675 (147, 36) 0.823349877349794 (147, 37) 0.668199622494786 (147, 38) 0.112736696815605 (147, 39) 1.00283682717542 (147, 40) 0.703126349942297 (147, 41) 0.42847325416304 (147, 42) 0.547571688805106 (147, 43) 0.595607807501684 (147, 44) 0.276729775218456 (147, 45) 0.689402156681288 (147, 46) 0.537817738761915 (147, 47) 0.0735758010522887 (147, 48) 0.0897667799791957 (147, 49) 0.314191427086512 (147, 50) 0.635013404900478 (147, 51) 1.06034347647823 (147, 52) 0.89344796707101 (147, 53) 0.827093927528672 (147, 54) 0.00192568002263195 (147, 55) 0.749336426919459 (147, 56) 0.325464956220008 (147, 57) 0.525872944154086 (147, 58) 0.915930313261152 (147, 59) 0.600990525393249 (147, 60) 0.882003011527922 (147, 61) 0.871553034908959 (147, 62) 0.449497887965562 (147, 63) 0.614644102010598 (147, 64) 1.01213168366117 (147, 65) 0.470656467408374 (147, 66) 0.509910958482872 (147, 67) 0.809443615924283 (147, 68) 0.224478522908156 (147, 69) 0.169535166904395 (147, 70) 0.358720056410905 (147, 71) 0.453708258593533 (147, 72) -0.0437843994977859 (147, 73) 0.38738521878065 (147, 74) 0.0605385468914271 (147, 75) 0.309363391910229 (147, 76) 0.116404490519437 (147, 77) 0.209981342213332 (147, 78) 0.538857487150948 (147, 79) 0.616670864871439 (147, 80) 0.237880426980172 (147, 81) 0.980735047791211 (147, 82) 0.845108002090042 (147, 83) 0.471655521368777 (147, 84) 0.326510738884676 (147, 85) 0.267789859471094 (147, 86) 0.0387203375726172 (147, 87) 0.515802605903784 (147, 88) 0.357293296032335 (147, 89) 1.01929847000091 (147, 90) 0.162703094996759 (147, 91) 0.453221317073705 (147, 92) 0.65670276207619 (147, 93) 0.611181469278638 (147, 94) 0.113517558031472 (147, 95) 0.378929253432161 (147, 96) 1.02201187860631 (147, 97) 0.248634581365044 (147, 98) 0.804187938084137 (147, 99) 0.858998557099602 (147, 100) 0.323374093762502 (147, 101) 0.616435887937903 (147, 102) 0.794698225654225 (147, 103) 0.852917951322191 (147, 104) 0.672188589606535 (147, 105) 0.281104458572087 (147, 106) 0.201049799362477 (147, 107) 1.07162471305128 (147, 108) 0.604607226116824 (147, 109) 0.937397395387016 (147, 110) 0.499376590998865 (147, 111) 0.0942940666638465 (147, 112) 0.900323494417583 (148, 0) 1 (148, 1) 98.04% (148, 2) 0.66374887075725 (148, 3) 0.782343745326858 (148, 4) (148, 5) 4/2 (148, 11) 19.8224139690267 (148, 12) SmoothSG (148, 13) 0.323858479240569 (148, 14) 0.323858479240569 (148, 15) 0.323858479240569 (148, 16) 0.323858479240569 (148, 17) 0.220288733455265 (148, 18) 0.351267774494329 (148, 19) 0.655453647385765 (148, 20) 0.832244463303563 (148, 21) 0.880527839598557 (148, 22) 0.611332569473395 (148, 23) 0.602884332685109 (148, 24) 0.656480977922574 (148, 25) 0.620330684833995 (148, 26) 0.635186270644487 (148, 27) 0.73942597959534 (148, 28) 0.574614919107863 (148, 29) 0.4643020618499 (148, 30) 0.323563442677469 (148, 31) 0.316301651661097 (148, 32) 0.351576729027595 (148, 33) 0.391448182412082 (148, 34) 0.475126377854028 (148, 35) 0.556842766906518 (148, 36) 0.383139040297657 (148, 37) 0.552256703522337 (148, 38) 0.6808689513653 (148, 39) 0.593486265163762 (148, 40) 0.61728834449981 (148, 41) 0.691423903408994 (148, 42) 0.453932314256806 (148, 43) 0.475561975798939 (148, 44) 0.566630399233211 (148, 45) 0.497427336606884 (148, 46) 0.362975386388163 (148, 47) 0.260372957660867 (148, 48) 0.141617761588348 (148, 49) 0.337487977133777 (148, 50) 0.659076573318118 (148, 51) 0.944459224334211 (148, 52) 0.826786749537898 (148, 53) 0.698570588724507 (148, 54) 0.474112753116935 (148, 55) 0.364278231441714 (148, 56) 0.467948094951849 (148, 57) 0.638695509514408 (148, 58) 0.645396094747573 (148, 59) 0.839851708347866 (148, 60) 0.801168235898071 (148, 61) 0.660983644270978 (148, 62) 0.742989435106681 (148, 63) 0.681670795750712 (148, 64) 0.624426592372419 (148, 65) 0.731007688418098 (148, 66) 0.637688061488287 (148, 67) 0.440538743933825 (148, 68) 0.390589807143175 (148, 69) 0.359197149991829 (148, 70) 0.209472649937388 (148, 71) 0.293633274718543 (148, 72) 0.240002321906588 (148, 73) 0.197675584451285 (148, 74) 0.166416312563642 (148, 75) 0.191864546452972 (148, 76) 0.177189322533351 (148, 77) 0.361081242100831 (148, 78) 0.343551120269582 (148, 79) 0.506011796365784 (148, 80) 0.668486724066469 (148, 81) 0.709396124552817 (148, 82) 0.693064356119033 (148, 83) 0.643984489910051 (148, 84) 0.303840817563331 (148, 85) 0.220166060029254 (148, 86) 0.192481013203298 (148, 87) 0.422358922076635 (148, 88) 0.517805117727287 (148, 89) 0.560537771705513 (148, 90) 0.512479067208843 (148, 91) 0.573276308174507 (148, 92) 0.429311550707902 (148, 93) 0.429838760471805 (148, 94) 0.49370092226929 (148, 95) 0.434445149783914 (148, 96) 0.51105821879132 (148, 97) 0.7398876713193 (148, 98) 0.681930572940149 (148, 99) 0.559054918579277 (148, 100) 0.652846607257293 (148, 101) 0.62888007628332 (148, 102) 0.718356792090661 (148, 103) 0.781691419242853 (148, 104) 0.52955130760396 (148, 105) 0.48486564920938 (148, 106) 0.465403827572819 (148, 107) 0.64989001642387 (148, 108) 0.8398507311457 (148, 109) 0.689556877237548 (148, 110) 0.689556877237548 (148, 111) 0.689556877237548 (148, 112) 0.689556877237548 (149, 0) 2 (149, 1) 91.49% (149, 2) 0.66374887075725 (149, 3) 0.782343745326858 (149, 5) 6/2 (149, 6) CustomFit Parameters (149, 12) SmoothWT (149, 13) 0.528124543580245 (149, 14) 0.528124543580245 (149, 15) 0.528124543580245 (149, 16) 0.343551480932041 (149, 17) 0.296957393586691 (149, 18) 0.412285182041738 (149, 19) 0.647022338639788 (149, 20) 0.754553997678086 (149, 21) 0.772348142499757 (149, 22) 0.685600224988311 (149, 23) 0.62907499309542 (149, 24) 0.607287157152212 (149, 25) 0.661804177934351 (149, 26) 0.657770718402165 (149, 27) 0.634727058630232 (149, 28) 0.570514760797546 (149, 29) 0.497223063804215 (149, 30) 0.361389605790202 (149, 31) 0.321196025990259 (149, 32) 0.359618767833638 (149, 33) 0.44615648691084 (149, 34) 0.451007644014496 (149, 35) 0.468356415303114 (149, 36) 0.498654953053907 (149, 37) 0.555490414255028 (149, 38) 0.578528801897702 (149, 39) 0.637434383522209 (149, 40) 0.625811955347168 (149, 41) 0.598362274962336 (149, 42) 0.518970368322835 (149, 43) 0.505922417932945 (149, 44) 0.498399853509815 (149, 45) 0.485165011839842 (149, 46) 0.389545076327839 (149, 47) 0.275498891600765 (149, 48) 0.246407326653065 (149, 49) 0.391783769838822 (149, 50) 0.626369418764569 (149, 51) 0.819915391999205 (149, 52) 0.788017532683327 (149, 53) 0.675745442241221 (149, 54) 0.486394519139464 (149, 55) 0.472861936102935 (149, 56) 0.493852178232322 (149, 57) 0.601192924859698 (149, 58) 0.689887316291784 (149, 59) 0.755140467202327 (149, 60) 0.772947150712767 (149, 61) 0.7214772812353 (149, 62) 0.690558070324988 (149, 63) 0.678822327955843 (149, 64) 0.685156115141097 (149, 65) 0.653349156049786 (149, 66) 0.591838138742584 (149, 67) 0.504144604985297 (149, 68) 0.388891572141733 (149, 69) 0.326461614874347 (149, 70) 0.278149015959882 (149, 71) 0.283101830587987 (149, 72) 0.218899151061927 (149, 73) 0.217637289070333 (149, 74) 0.183081439230854 (149, 75) 0.2088158679496 (149, 76) 0.220810997094201 (149, 77) 0.318500248751382 (149, 78) 0.402684643680222 (149, 79) 0.510467201431233 (149, 80) 0.588046510611867 (149, 81) 0.688500931972697 (149, 82) 0.667166256717217 (149, 83) 0.556303217035341 (149, 84) 0.371361257555159 (149, 85) 0.28014331762227 (149, 86) 0.263016664264958 (149, 87) 0.402947046043695 (149, 88) 0.482611719163974 (149, 89) 0.562990235004266 (149, 90) 0.494127213027558 (149, 91) 0.514328400516284 (149, 92) 0.486126056884609 (149, 93) 0.4673484020619 (149, 94) 0.444387640022057 (149, 95) 0.474184742690636 (149, 96) 0.582096533503215 (149, 97) 0.626247909778643 (149, 98) 0.663690673727835 (149, 99) 0.633021133810559 (149, 100) 0.613319703900097 (149, 101) 0.644152090118773 (149, 102) 0.702040559872434 (149, 103) 0.710007536777565 (149, 104) 0.586706512624985 (149, 105) 0.501592535336417 (149, 106) 0.509489284117502 (149, 107) 0.67163222711906 (149, 108) 0.725810253954267 (149, 109) 0.687342066678617 (149, 110) 0.562938157514748 (149, 111) 0.562938157514748 (149, 112) 0.562938157514748 (150, 0) 3 (150, 1) 69.87% (150, 2) 0.66374887075725 (150, 3) 0.649026882289187 (150, 4) (150, 5) 4/2 (150, 6) a (150, 7) k1 (150, 8) b (150, 9) For row vectors see => (150, 10) (150, 11) DataH (150, 12) 0.840672719057329 (150, 13) 0.980386523491798 (150, 14) 0.914864936193609 (150, 15) 0.698674280727284 (150, 16) 0.0977045718654018 (150, 17) 0.739693558811011 (150, 18) 0.253152768168283 (150, 19) 0.516814886817611 (150, 20) 0.428376441813782 (150, 21) 0.10083223040776 (150, 22) 0.221784878641725 (150, 23) 0.413211416160165 (150, 24) 0.0985525107845373 (150, 25) 0.437307221905276 (150, 26) 0.815742991303456 (150, 27) 0.257653798036776 (150, 28) 0.623010789794945 (150, 29) 0.290152867948983 (150, 30) 0.106589098259896 (150, 31) 0.624692305742617 (150, 32) 0.348464383293561 (150, 33) 0.64786949310476 (150, 34) 0.762529165465694 (150, 35) 0.018505338719517 (150, 36) 0.289985734539688 (150, 37) 0.67414308979352 (150, 38) 0.575022263278089 (150, 39) 0.136294314278759 (150, 40) 0.571051002559474 (150, 41) 0.803638690182338 (150, 42) 0.429628333301726 (150, 43) 0.192313657434653 (150, 44) 0.638709401950043 (150, 45) 0.684273523211159 (150, 46) 0.41583487708424 (150, 47) 0.416152489768261 (150, 48) 0.748247265493915 (150, 49) 0.49740240400452 (150, 50) 0.582703677269128 (150, 51) 0.992979934492181 (150, 52) 0.330545970854196 (150, 53) 0.404443179991413 (150, 54) 0.873703620313851 (150, 55) 0.735671282539902 (150, 56) 0.162203731835886 (150, 57) 0.320596136217456 (150, 58) 0.824037779249998 (150, 59) 0.429083138654642 (150, 60) 0.745481546416034 (150, 61) 0.301409398941259 (150, 62) 0.237593394328169 (150, 63) 0.997131534528263 (150, 64) 0.15419183317634 (150, 65) 0.510738165678343 (150, 66) -0.0665545173580544 (150, 67) 0.0468115570734242 (150, 68) 0.302263704005056 (150, 69) 0.885682922002845 (150, 70) 0.75601123704072 (150, 71) 0.873766930329107 (150, 72) 0.658995448692507 (150, 73) 0.544606511243534 (150, 74) 0.34084129395389 (150, 75) 0.260880461321415 (150, 76) 0.108490588433177 (150, 77) 0.798164612250388 (150, 78) 0.271946466470427 (150, 79) 0.699563730632707 (150, 80) 0.172460219337051 (150, 81) 0.778017753789341 (150, 82) 0.578326960182241 (150, 83) 0.946711325916507 (150, 84) 0.257755099091782 (150, 85) 0.487338652344537 (150, 86) 0.396271980932736 (150, 87) 0.44702545536617 (150, 88) 0.278835287591649 (150, 89) 0.0737886536763469 (150, 90) 0.22449310930596 (150, 91) 0.316974275056406 (150, 92) 0.137710447983484 (150, 93) 0.154617418323451 (150, 94) 1.02065718095777 (150, 95) 0.431988107601526 (150, 96) 0.625179543415546 (150, 97) 0.852260236067845 (150, 98) -0.0229629449005925 (150, 99) 0.579462949849065 (150, 100) 0.665091514078219 (150, 101) 0.641602549703545 (150, 102) 0.300284439686615 (150, 103) 0.258470816607527 (150, 104) 0.158855835322981 (150, 105) 0.597320869887949 (150, 106) 0.849808343713449 (150, 107) 0.146043959287309 (150, 108) 0.387553862722562 (150, 109) 0.486042293394705 (150, 110) 0.138157296204722 (150, 111) 0.681100815352741 (151, 0) 4 (151, 1) 9.77% (151, 2) 0.467799492035926 (151, 3) 0.481985233226076 (151, 5) 1 (151, 6) 20 (151, 7) 0.1 (151, 8) 50 (151, 9) 3 (151, 11) SmoothSG (151, 12) 0.66374. (151, 13) 0.66374. (151, 14) 0.66374. (151, 15) 0.66374. (151, 16) 0.46779. (151, 17) 0.39252. (151, 18) 0.44239. (151, 19) 0.45664. (151, 20) 0.27731. (151, 21) 0.31873. (151, 22) 0.20520. (151, 23) 0.18765. (151, 24) 0.38993. (151, 25) 0.42237. (151, 26) 0.50656. (151, 27) 0.58134. (151, 28) 0.39480. (151, 29) 0.32034. (151, 30) 0.34945. (151, 31) 0.34029. (151, 32) 0.57450. (151, 33) 0.58750. (151, 34) 0.41207. (151, 35) 0.40779. (151, 36) 0.41095. (151, 37) 0.36696. (151, 38) 0.46793. (151, 39) 0.51545. (151, 40) 0.51990. (151, 41) 0.48513. (151, 42) 0.52244. (151, 43) 0.48791. (151, 44) 0.46796. (151, 45) 0.50413. (151, 46) 0.58546. (151, 47) 0.52379. (151, 48) 0.49334. (151, 49) 0.67629. (151, 50) 0.69601. (151, 51) 0.56628. (151, 52) 0.60006. (151, 53) 0.65489. (151, 54) 0.56227. (151, 55) 0.53481. (151, 56) 0.51901. (151, 57) 0.40083. (151, 58) 0.51977. (151, 59) 0.64224. (151, 60) 0.48337. (151, 61) 0.49192. (151, 62) 0.48922. (151, 63) 0.49567. (151, 64) 0.47348. (151, 65) 0.29300. (151, 66) 0.02300. (151, 67) 0.19575. (151, 68) 0.33381. (151, 69) 0.67268. (151, 70) 0.83570. (151, 71) 0.83862. (151, 72) 0.67241. (151, 73) 0.54696. (151, 74) 0.29416. (151, 75) 0.31850. (151, 76) 0.30779. (151, 77) 0.46307. (151, 78) 0.45976. (151, 79) 0.51991. (151, 80) 0.43494. (151, 81) 0.65858. (151, 82) 0.63397. (151, 83) 0.68105. (151, 84) 0.51820. (151, 85) 0.46678. (151, 86) 0.37851. (151, 87) 0.37612. (151, 88) 0.25382. (151, 89) 0.22669. (151, 90) 0.18868. (151, 91) 0.11801. (151, 92) 0.31035. (151, 93) 0.40857. (151, 94) 0.50544. (151, 95) 0.74714. (151, 96) 0.64793. (151, 97) 0.44009. (151, 98) 0.48348. (151, 99) 0.50188. (151, 100) 0.50440. (151, 101) 0.59645. (151, 102) 0.36289. (151, 103) 0.25005. (151, 104) 0.38674. (151, 105) 0.47957. (151, 106) 0.50281. (151, 107) 0.52869. (151, 108) 0.32916. (151, 109) 0.32916. (151, 110) 0.32916. (151, 111) 0.32916. (152, 0) 5 (152, 1) 73.97% (152, 2) 0.392523033261861 (152, 3) 0.459587169338366 (152, 5) 9 (152, 6) Divisor (152, 7) 18-May-27 (152, 8) 18-May-27 (152, 9) 10000 (152, 11) SmoothWt (152, 12) 0.78234. (152, 13) 0.78234. (152, 14) 0.78234. (152, 15) 0.64902. (152, 16) 0.48198. (152, 17) 0.45958. (152, 18) 0.42206. (152, 19) 0.41711. (152, 20) 0.33281. (152, 21) 0.28142. (152, 22) 0.24670. (152, 23) 0.26871. (152, 24) 0.33713. (152, 25) 0.42348. (152, 26) 0.50652. (152, 27) 0.48643. (152, 28) 0.43188. (152, 29) 0.35688. (152, 30) 0.34677. (152, 31) 0.41357. (152, 32) 0.49551. (152, 33) 0.53431. (152, 34) 0.47319. (152, 35) 0.38695. (152, 36) 0.39920. (152, 37) 0.43413. (152, 38) 0.46744. (152, 39) 0.46431. (152, 40) 0.51085. (152, 41) 0.52676. (152, 42) 0.49895. (152, 43) 0.46683. (152, 44) 0.50164. (152, 45) 0.53004. (152, 46) 0.53725. (152, 47) 0.52870. (152, 48) 0.56337. (152, 49) 0.61813. (152, 50) 0.64529. (152, 51) 0.63414. (152, 52) 0.58254. (152, 53) 0.59449. (152, 54) 0.59934. (152, 55) 0.55598. (152, 56) 0.47743. (152, 57) 0.45544. (152, 58) 0.54212. (152, 59) 0.56092. (152, 60) 0.52878. (152, 61) 0.47739. (152, 62) 0.46772. (152, 63) 0.50967. (152, 64) 0.40548. (152, 65) 0.30571. (152, 66) 0.15243. (152, 67) 0.22314. (152, 68) 0.38458. (152, 69) 0.63268. (152, 70) 0.74979. (152, 71) 0.76462. (152, 72) 0.65673. (152, 73) 0.52979. (152, 74) 0.37788. (152, 75) 0.33600. (152, 76) 0.33959. (152, 77) 0.45731. (152, 78) 0.45469. (152, 79) 0.50707. (152, 80) 0.48031. (152, 81) 0.60910. (152, 82) 0.62385. (152, 83) 0.64196. (152, 84) 0.51288. (152, 85) 0.46264. (152, 86) 0.39934. (152, 87) 0.36138. (152, 88) 0.27765. (152, 89) 0.22133. (152, 90) 0.20795. (152, 91) 0.21152. (152, 92) 0.28905. (152, 93) 0.39217. (152, 94) 0.55534. (152, 95) 0.62161. (152, 96) 0.60463. (152, 97) 0.53029. (152, 98) 0.45387. (152, 99) 0.50183. (152, 100) 0.52385. (152, 101) 0.52149. (152, 102) 0.39166. (152, 103) 0.32584. (152, 104) 0.37091. (152, 105) 0.46820. (152, 106) 0.50917. (152, 107) 0.44402. (152, 108) 0.37942. (152, 109) 0.37074. (152, 110) 0.37074. (152, 111) 0.37074. (153, 0) 6 (153, 1) 25.32% (153, 2) 0.442397622367484 (153, 3) 0.422061801049031 (153, 6) 1e-06 (153, 7) 1e-06 (153, 8) 1e-06 (153, 9) 1e-06 (154, 0) 7 (154, 1) 51.68% (154, 2) 0.456641806393225 (154, 3) 0.417114318848415 (155, 0) 8 (155, 1) 42.84% (155, 2) 0.277310513644589 (155, 3) 0.332817911855788 (156, 0) 9 (156, 1) 10.08% (156, 2) 0.318736280315002 (156, 3) 0.28142729279023 (157, 0) 10 (157, 1) 22.18% (157, 2) 0.205204698583276 (157, 3) 0.246707875739927 (158, 0) 11 (158, 1) 41.32% (158, 2) 0.187651606684922 (158, 3) 0.26871649773845 (159, 0) 12 (159, 1) 9.86% (159, 2) 0.389932902706232 (159, 3) 0.337135853158853 (160, 0) 13 (160, 1) 43.73% (160, 2) 0.422377517694399 (160, 3) 0.423486431565417 (161, 0) 14 (161, 1) 81.57% (161, 2) 0.506568018680793 (161, 3) 0.506523812708217 (162, 0) 15 (162, 1) 25.77% (162, 2) 0.58134268211056 (162, 3) 0.486436560684599 (163, 0) 16 (163, 1) 62.30% (163, 2) 0.394805368470164 (163, 3) 0.431886421213301 (164, 0) 17 (164, 1) 29.02% (164, 2) 0.320347284100765 (164, 3) 0.35688938708178 (165, 0) 18 (165, 1) 10.66% (165, 2) 0.349455888902443 (165, 3) 0.34677031280571 (166, 0) 19 (166, 1) 62.47% (166, 2) 0.340293057245667 (166, 3) 0.41357847126539 (167, 0) 20 (167, 1) 34.85% (167, 2) 0.574507612094236 (167, 3) 0.49551500125567 (168, 0) 21 (168, 1) 64.79% (168, 2) 0.587499572003623 (168, 3) 0.534310357921658 (169, 0) 22 (169, 1) 76.25% (169, 2) 0.412077748173 (169, 3) 0.473198586430987 (170, 0) 23 (170, 1) 1.85% (170, 2) 0.40779482031526 (170, 3) 0.386950933229733 (171, 0) 24 (171, 1) 29.00% (171, 2) 0.410957970681921 (171, 3) 0.399200609932102 (172, 0) 25 (172, 1) 67.41% (172, 2) 0.366966106590752 (172, 3) 0.434138324223821 (173, 0) 26 (173, 1) 57.50% (173, 2) 0.467933448613051 (173, 3) 0.467442037230887 (174, 0) 27 (174, 1) 13.63% (174, 2) 0.515457952343878 (174, 3) 0.464312361609696 (175, 0) 28 (175, 1) 57.11% (175, 2) 0.519904444760286 (175, 3) 0.51085217924227 (176, 0) 29 (176, 1) 80.36% (176, 2) 0.485138449101311 (176, 3) 0.526764745998092 (177, 0) 30 (177, 1) 42.96% (177, 2) 0.522440855112512 (177, 3) 0.498950011072075 (178, 0) 31 (178, 1) 19.23% (178, 2) 0.487913661640298 (178, 3) 0.466836517355666 (179, 0) 32 (179, 1) 63.87% (179, 2) 0.467966484227708 (179, 3) 0.501640641947525 (180, 0) 33 (180, 1) 68.43% (180, 2) 0.504134646700061 (180, 3) 0.530041697211662 (181, 0) 34 (181, 1) 41.58% (181, 2) 0.585468480805701 (181, 3) 0.537257036072835 (182, 0) 35 (182, 1) 41.62% (182, 2) 0.523798186050259 (182, 3) 0.52869974240853 (183, 0) 36 (183, 1) 74.82% (183, 2) 0.493341379464167 (183, 3) 0.563376682042297 (184, 0) 37 (184, 1) 49.74% (184, 2) 0.676293241024493 (184, 3) 0.618137946866676 (185, 0) 38 (185, 1) 58.27% (185, 2) 0.696019435304242 (185, 3) 0.645296549460988 (186, 0) 39 (186, 1) 99.30% (186, 2) 0.566285352883689 (186, 3) 0.634142742635458 (187, 0) 40 (187, 1) 33.05% (187, 2) 0.600068333454335 (187, 3) 0.58254349323475 (188, 0) 41 (188, 1) 40.44% (188, 2) 0.65489231618259 (188, 3) 0.594497771038046 (189, 0) 42 (189, 1) 87.37% (189, 2) 0.562271861144563 (189, 3) 0.599343276521585 (190, 0) 43 (190, 1) 73.57% (190, 2) 0.534813978052188 (190, 3) 0.555985318680894 (191, 0) 44 (191, 1) 16.22% (191, 2) 0.519009628418799 (191, 3) 0.477431936954024 (192, 0) 45 (192, 1) 32.06% (192, 2) 0.400834045245779 (192, 3) 0.455447316890964 (193, 0) 46 (193, 1) 82.40% (193, 2) 0.519773075036952 (193, 3) 0.54212857397179 (194, 0) 47 (194, 1) 42.91% (194, 2) 0.642243822748891 (194, 3) 0.560921511383856 (195, 0) 48 (195, 1) 74.55% (195, 2) 0.483369725225272 (195, 3) 0.528784543113119 (196, 0) 49 (196, 1) 30.14% (196, 2) 0.491928582464289 (196, 3) 0.477399194610565 (197, 0) 50 (197, 1) 23.76% (197, 2) 0.489227471010737 (197, 3) 0.467726158835103 (198, 0) 51 (198, 1) 99.71% (198, 2) 0.49567717821275 (198, 3) 0.509679180357046 (199, 0) 52 (199, 1) 15.42% (199, 2) 0.473487416778809 (199, 3) 0.405483752990261 (200, 0) 53 (200, 1) 51.07% (200, 2) 0.293005053942701 (200, 3) 0.305714691141476 (201, 0) 54 (201, 1) -6.66% (201, 2) 0.0230073530231521 (201, 3) 0.152432381178974 (202, 0) 55 (202, 1) 4.68% (202, 2) 0.195752054381211 (202, 3) 0.22314157024394 (203, 0) 56 (203, 1) 30.23% (203, 2) 0.333817750929815 (203, 3) 0.38458186553893 (204, 0) 57 (204, 1) 88.57% (204, 2) 0.672680176182536 (204, 3) 0.63268634838918 (205, 0) 58 (205, 1) 75.60% (205, 2) 0.83570090927312 (205, 3) 0.749799174275959 (206, 0) 59 (206, 1) 87.38% (206, 2) 0.838622234786874 (206, 3) 0.764622621744462 (207, 0) 60 (207, 1) 65.90% (207, 2) 0.672411410315177 (207, 3) 0.656731751135268 (208, 0) 61 (208, 1) 54.46% (208, 2) 0.546962121837471 (208, 3) 0.529793378963769 (209, 0) 62 (209, 1) 34.08% (209, 2) 0.294162186632619 (209, 3) 0.377887096013028 (210, 0) 63 (210, 1) 26.09% (210, 2) 0.318504003034677 (210, 3) 0.336008474692478 (211, 0) 64 (211, 1) 10.85% (211, 2) 0.307796540856358 (211, 3) 0.339594408096384 (212, 0) 65 (212, 1) 79.82% (212, 2) 0.463071626878801 (212, 3) 0.457312459834721 (213, 0) 66 (213, 1) 27.19% (213, 2) 0.459764348365749 (213, 3) 0.454694099216411 (214, 0) 67 (214, 1) 69.96% (214, 2) 0.519918963341055 (214, 3) 0.507076325505867 (215, 0) 68 (215, 1) 17.25% (215, 2) 0.434941849786469 (215, 3) 0.480313005945324 (216, 0) 69 (216, 1) 77.80% (216, 2) 0.658584256769732 (216, 3) 0.609100297439536 (217, 0) 70 (217, 1) 57.83% (217, 2) 0.633976399468704 (217, 3) 0.62385048426525 (218, 0) 71 (218, 1) 94.67% (218, 2) 0.681051259758178 (218, 3) 0.641961611381272 (219, 0) 72 (219, 1) 25.78% (219, 2) 0.518204569916317 (219, 3) 0.512884910545824 (220, 0) 73 (220, 1) 48.73% (220, 2) 0.466781852136149 (220, 3) 0.462645210929481 (221, 0) 74 (221, 1) 39.63% (221, 2) 0.378517129221809 (221, 3) 0.399348282767006 (222, 0) 75 (222, 1) 44.70% (222, 2) 0.376128919046508 (222, 3) 0.361379801018685 (223, 0) 76 (223, 1) 27.88% (223, 2) 0.253828623014802 (223, 3) 0.277655463455408 (224, 0) 77 (224, 1) 7.38% (224, 2) 0.226691680502637 (224, 3) 0.221335831694093 (225, 0) 78 (225, 1) 22.45% (225, 2) 0.188684799851638 (225, 3) 0.207950102328724 (226, 0) 79 (226, 1) 31.70% (226, 2) 0.118013073715812 (226, 3) 0.211526223527545 (227, 0) 80 (227, 1) 13.77% (227, 2) 0.310353364018998 (227, 3) 0.289051668997099 (228, 0) 81 (228, 1) 15.46% (228, 2) 0.408574740211546 (228, 3) 0.39217221061231 (229, 0) 82 (229, 1) 102.07% (229, 2) 0.505449255914421 (229, 3) 0.555341398458032 (230, 0) 83 (230, 1) 43.20% (230, 2) 0.747146431259937 (230, 3) 0.621612825104723 (231, 0) 84 (231, 1) 62.52% (231, 2) 0.647936611321502 (231, 3) 0.604636617071395 (232, 0) 85 (232, 1) 85.23% (232, 2) 0.44009414408783 (232, 3) 0.530296106964893 (233, 0) 86 (233, 1) -2.30% (233, 2) 0.483487159955641 (233, 3) 0.453869843847312 (234, 0) 87 (234, 1) 57.95% (234, 2) 0.501889164529479 (234, 3) 0.501834308185982 (235, 0) 88 (235, 1) 66.51% (235, 2) 0.504406474993834 (235, 3) 0.523858559569544 (236, 0) 89 (236, 1) 64.16% (236, 2) 0.596451861382801 (236, 3) 0.521499258121877 (237, 0) 90 (237, 1) 30.03% (237, 2) 0.3628907468763 (237, 3) 0.391660822342576 (238, 0) 91 (238, 1) 25.85% (238, 2) 0.250052757595305 (238, 3) 0.325846268825918 (239, 0) 92 (239, 1) 15.89% (239, 2) 0.386748871354867 (239, 3) 0.37091596248444 (240, 0) 93 (240, 1) 59.73% (240, 2) 0.479576137442875 (240, 3) 0.468200638181282 (241, 0) 94 (241, 1) 84.98% (241, 2) 0.502811916913231 (241, 3) 0.509173820837378 (242, 0) 95 (242, 1) 14.60% (242, 2) 0.52869258001999 (242, 3) 0.444024383779623 (243, 0) 96 (243, 1) 38.76% (243, 2) 0.329164195448721 (243, 3) 0.379422192605543 (244, 0) 97 (244, 1) 48.60% (244, 2) 0.329164195448721 (244, 3) 0.370743774742081 (245, 0) 98 (245, 1) 13.82% (245, 2) 0.329164195448721 (245, 3) 0.370743774742081 (246, 0) 99 (246, 1) 0.681100815352741 (246, 2) 0.329164195448721 (246, 3) 0.370743774742081 (247, 0) (247, 1) (247, 2) (247, 3) (247, 4) (247, 5) (247, 6) (247, 7) (247, 8) (247, 9) (247, 10) (249, 0) Huckel MO Calculations with Diagonalize & MODensity (251, 0) Benzene (252, 0) 0 (252, 1) 1 (252, 2) 0 (252, 3) 0 (252, 4) 0 (252, 5) 1 (253, 0) 1 (253, 1) 0.0 (253, 2) 1.0 (253, 3) 0.0 (253, 4) 0.0 (253, 5) 0.0 (254, 0) 0 (254, 1) 1.0 (254, 2) 0.0 (254, 3) 1.0 (254, 4) 0.0 (254, 5) 0.0 (255, 0) 0 (255, 1) 0.0 (255, 2) 1.0 (255, 3) 0.0 (255, 4) 1.0 (255, 5) 0.0 (256, 0) 0 (256, 1) 0.0 (256, 2) 0.0 (256, 3) 1.0 (256, 4) 0.0 (256, 5) 1.0 (257, 0) 1.0 (257, 1) 0.0 (257, 2) 0.0 (257, 3) 0.0 (257, 4) 1.0 (257, 5) 0-Jan-00 (258, 0) Coefficients (258, 6) Charges & Bond Orders (259, 0) 0-Jan-00 (259, 1) 0.203626199833971 (259, 2) -0.540249669427505 (259, 3) -0.571613228397566 (259, 4) 0.081189988689209 (259, 5) 0.40824809524386 (259, 6) 0-Jan-00 (259, 7) 0.666666679381651 (259, 8) 8.41062381127025e-09 (259, 9) -0.333333323907086 (259, 10) -1.30955694588016e-08 (259, 11) 0.6666666580932 (260, 0) 0.408248284693672 (260, 1) -0.366056816023378 (260, 2) -0.446470308990219 (260, 3) 0.356119505018703 (260, 4) 0.454436549455926 (260, 5) -0.408247876680173 (260, 6) 0.666666679381651 (260, 7) 0.999999982644639 (260, 8) 0.666666661826276 (260, 9) -1.30854195555313e-08 (260, 10) -0.333333316440933 (260, 11) 4.67960771416859e-09 (261, 0) 0.408248292276417 (261, 1) -0.569683050061691 (261, 2) 0.09377935496001 (261, 3) 0.215493545674241 (261, 4) -0.535626779843116 (261, 5) 0.408248051307928 (261, 6) 8.41062381127025e-09 (261, 7) 0.666666661826276 (261, 8) 1.00000002618184 (261, 9) 0.666666658259792 (261, 10) 4.6790240028802e-09 (261, 11) -0.333333359476103 (262, 0) 0.408248297915502 (262, 1) -0.203626199110119 (262, 2) 0.540249658586594 (262, 3) -0.571612873049227 (262, 4) 0.0811904718733303 (262, 5) -0.408248497025432 (262, 6) -0.333333323907086 (262, 7) -1.30854195555313e-08 (262, 8) 0.666666658259792 (262, 9) 0.99999999063574 (262, 10) 0.666666679742695 (262, 11) 8.41173485927109e-09 (263, 0) 0.408248296115391 (263, 1) 0.366056816891078 (263, 2) 0.446470298136344 (263, 3) 0.356119149606617 (263, 4) 0.454436066401911 (263, 5) 0.408248724731766 (263, 6) -1.30955694588016e-08 (263, 7) -0.333333316440933 (263, 8) 4.6790240028802e-09 (263, 9) 0.666666679742695 (263, 10) 0.999999983183009 (263, 11) 0.666666661992868 (264, 0) 0.408248288674712 (264, 1) 0.56968. (264, 2) -0.09377. (264, 3) 0.21549. (264, 4) -0.53562. (264, 5) -0.40824849757795 (264, 6) 0.6666666580932 (264, 7) 0.00000. (264, 8) -0.33333. (264, 9) 0.00000. (264, 10) 0.66666. (264, 11) 1.00000002618014 (265, 0) 1.99999999964824 (265, 1) 0.999999999907418 (265, 2) 0.999999999740823 (265, 3) -0.999999999760873 (265, 4) -0.999999999887909 (265, 5) -1.9999999996477 (265, 6) 2 (265, 7) 2 (265, 8) 2 (265, 9) 0 (265, 10) 0 (265, 11) 0 (266, 0) Orbital Energies (266, 1) (266, 2) (266, 3) (266, 4) (266, 5) (266, 6) Occupancies (266, 7) (266, 8) (266, 9) (266, 10) (266, 11) (267, 0) allyl (267, 4) CycloPropene (268, 0) allyl (268, 1) 1 (268, 2) 1 (268, 4) 0 (268, 5) 1 (268, 6) 1 (269, 0) 0 (269, 1) 1 (269, 2) 0 (269, 3) (269, 4) 1 (269, 5) 0 (269, 6) 1 (270, 0) 1 (270, 1) 0.0 (270, 2) 1.0 (270, 3) (270, 4) 1 (270, 5) 1 (270, 6) 0 (271, 0) 0.0 (271, 1) 1.0 (271, 2) 0-Jan-00 (271, 3) (272, 0) 0.577350269020386 (272, 1) 0.707106781 (272, 2) -0.408248290380094 (272, 3) (272, 4) 0.577350269020386 (272, 5) 0.707106781 (272, 6) -0.408248290380094 (272, 7) 0.999999999443051 (272, 8) 0.499999999706869 (272, 9) 0.499999999882748 (273, 0) 0-Jan-00 (273, 1) -0.707106774939676 (273, 2) 0.499999999802189 (273, 3) 1-Jan-00 (273, 4) 0.707106786873777 (273, 5) -1.05055558436568e-13 (273, 6) -0.408248290380094 (273, 7) 0.499999999706869 (273, 8) 0.999999999443051 (273, 9) 0.499999999882748 (274, 0) 0.707106781000074 (274, 1) 8.70250165487772e-09 (274, 2) -0.707106780999926 (274, 3) 0.707106786873777 (274, 4) 0.999999999472574 (274, 5) 0.707106774939676 (274, 6) 0.816496580903792 (274, 7) 0.499999999882748 (274, 8) 0.499999999882748 (274, 9) 1.00000000005863 (275, 0) 0.4999999913634 (275, 1) 0.70710. (275, 2) 0.500000000066007 (275, 3) -1.05055558436568e-13 (275, 4) 0.70710. (275, 5) 0.999999991297394 (275, 6) -0.999999999824121 (275, 7) 2 (275, 8) 0.5 (275, 9) 0.5 (276, 0) 1.41421356181345 (276, 1) 2.31121765184201e-16 (276, 2) -1.41421356181345 (276, 3) 2 (276, 4) 1 (276, 5) 0 (277, 0) Orbital energies (277, 1) (277, 2) (277, 3) Occupancies (277, 4) (277, 5) (278, 0) 0 (278, 1) 1 (278, 2) 0 (278, 3) 0 (279, 0) CycloPropene (279, 1) 0 (279, 2) 1 (279, 3) 0 (280, 0) 0 (280, 1) 1 (280, 2) 1 (280, 3) 1 (281, 0) 1 (281, 1) 0.0 (281, 2) 1.0 (281, 3) 1 (282, 0) 1.0 (282, 1) 1.0 (282, 2) 0-Jan-00 (283, 0) 0.228013446618914 (283, 1) -0.577352361078949 (283, 2) -0.656536273861059 (283, 3) Charges & Bond Orders (283, 4) 0.770651761364948 (283, 5) 0.862087792050523 (283, 6) 0.26328399961506 (283, 7) -0.367267694023921 (284, 0) 0-Jan-00 (284, 1) 0.707106781 (284, 2) -0.408248290380094 (284, 3) 0.999999999443051 (284, 4) 0.499999999706869 (284, 5) 0.499999999882748 (284, 6) 0.494814871071277 (284, 7) -0.103977829590517 (285, 0) 0.577350269020386 (285, 1) -0.707106781 (285, 2) -0.408248290380094 (285, 3) 0.499999999706869 (285, 4) 0.999999999443051 (285, 5) 0.499999999882748 (285, 6) 0.666666632583364 (285, 7) 0.758108597045527 (286, 0) 0.577350269223474 (286, 1) 0.00000. (286, 2) 0.816496580903792 (286, 3) 0.50000. (286, 4) 0.50000. (286, 5) 1.00000000005863 (286, 6) 0.758108597045527 (286, 7) 1.52874796159303 (287, 0) 1.99999999929649 (287, 1) -0.999999999472364 (287, 2) -0.999999999824121 (287, 3) 2 (287, 4) 0.5 (287, 5) 0.5 (287, 6) 0 (287, 7) 0 (288, 0) Orbital energies (288, 1) (288, 2) (288, 3) Occupancies (288, 4) (288, 5) (289, 0) Napthalene (290, 0) 0 (290, 1) 1 (290, 2) 0 (290, 3) 0 (290, 4) 0 (290, 5) 0 (290, 6) 0 (290, 7) 0 (290, 8) 0 (290, 9) 1 (291, 0) 1 (291, 1) 0 (291, 2) 1 (291, 3) 0 (291, 4) 0 (291, 5) 0 (291, 6) 1 (291, 7) 0 (291, 8) 0 (291, 9) 0 (292, 0) 0 (292, 1) 1 (292, 2) 0 (292, 3) 1 (292, 4) 0 (292, 5) 0 (292, 6) 0 (292, 7) 0 (292, 8) 0 (292, 9) 0 (293, 0) 0 (293, 1) 0 (293, 2) 1 (293, 3) 0 (293, 4) 1 (293, 5) 0 (293, 6) 0 (293, 7) 0 (293, 8) 0 (293, 9) 0 (294, 0) 0 (294, 1) 0 (294, 2) 0 (294, 3) 1 (294, 4) 0 (294, 5) 1 (294, 6) 0 (294, 7) 0 (294, 8) 0 (294, 9) 0 (295, 0) 0 (295, 1) 0 (295, 2) 0 (295, 3) 0 (295, 4) 1 (295, 5) 0 (295, 6) 1 (295, 7) 0 (295, 8) 0 (295, 9) 0 (296, 0) 0 (296, 1) 1 (296, 2) 0 (296, 3) 0 (296, 4) 0 (296, 5) 1 (296, 6) 0 (296, 7) 1 (296, 8) 0 (296, 9) 0 (297, 0) 0 (297, 1) 0 (297, 2) 0 (297, 3) 0 (297, 4) 0 (297, 5) 0 (297, 6) 1 (297, 7) 0 (297, 8) 1 (297, 9) 0 (298, 0) 0 (298, 1) 0 (298, 2) 0 (298, 3) 0 (298, 4) 0 (298, 5) 0 (298, 6) 0 (298, 7) 1 (298, 8) 0 (298, 9) 1 (299, 0) 1 (299, 1) 0 (299, 2) 0 (299, 3) 0 (299, 4) 0 (299, 5) 0 (299, 6) 0 (299, 7) 0 (299, 8) 1 (299, 9) 0 (301, 0) 0.300552618865934 (301, 1) -0.262866512094655 (301, 2) -0.399585322649566 (301, 3) 2.30058878609385e-06 (301, 4) -0.425323563420966 (301, 5) 0.425326445431614 (301, 6) -3.54500086221116e-07 (301, 7) -0.399585690347221 (301, 8) 0.2628649077223 (301, 9) 0.300551970672775 (302, 0) 0.461402539691213 (302, 1) -2.97516697197637e-06 (302, 2) -0.34704704983851 (302, 3) -0.408248204097254 (302, 4) 1.57949672129329e-06 (302, 5) 2.02549766481687e-08 (302, 6) -0.408247799660767 (302, 7) 0.34704671198592 (302, 8) 7.29001071033264e-07 (302, 9) -0.461401949116648 (303, 0) 0.300550474014292 (303, 1) 0.262864596602443 (303, 2) -0.399586162539279 (303, 3) -1.35969525165464e-06 (303, 4) 0.425325197656539 (303, 5) -0.425326412198027 (303, 6) 8.73068648329465e-07 (303, 7) -0.399585710425002 (303, 8) -0.262866204048332 (303, 9) 0.300551248950804 (304, 0) 0.230699686519935 (304, 1) 0.425328323819759 (304, 2) -0.173524180331249 (304, 3) 0.408246209276469 (304, 4) 0.262866117424042 (304, 5) 0.262864923732129 (304, 6) 0.408247838927576 (304, 7) 0.173523778018905 (304, 8) 0.425325961513728 (304, 9) -0.230699644917767 (305, 0) 0.230700853130142 (305, 1) 0.425328352464161 (305, 2) 0.173522878145634 (305, 3) 0.408245021233485 (305, 4) -0.262863700073908 (305, 5) 0.262866171152701 (305, 6) -0.40824949819074 (305, 7) 0.173523261248824 (305, 8) -0.425325789456966 (305, 9) 0.230700610002743 (306, 0) 0.300552641345381 (306, 1) 0.262866502786915 (306, 2) 0.39958530473089 (306, 3) -1.44970849585181e-06 (306, 4) -0.425325767867047 (306, 5) -0.425324395859488 (306, 6) -3.49923909577093e-07 (306, 7) -0.399585772162524 (306, 8) 0.262866158794155 (306, 9) -0.300550558899737 (307, 0) 0.461402549702341 (307, 1) -2.92195281427554e-06 (307, 2) 0.347047037217096 (307, 3) -0.408246852415492 (307, 4) 6.47280744295921e-07 (307, 5) -3.44433098358331e-09 (307, 6) 0.4082487809003 (307, 7) 0.347047366011477 (307, 8) -1.15698521318189e-06 (307, 9) 0.461401785006816 (308, 0) 0.300550474194068 (308, 1) -0.262864612572209 (308, 2) 0.399586163231124 (308, 3) 2.49465493213104e-06 (308, 4) 0.42532708790978 (308, 5) 0.425324363149224 (308, 6) 8.67596645815026e-07 (308, 7) -0.399585791480509 (308, 8) -0.262864953156517 (308, 9) -0.300552444869523 (309, 0) 0.230699673503724 (309, 1) -0.425322457931089 (309, 2) 0.173524158135268 (309, 3) 0.408250850971854 (309, 4) 0.262866141964759 (309, 5) -0.262866207423982 (309, 6) -0.408248739032502 (309, 7) 0.17352331073357 (309, 8) 0.425325019066698 (309, 9) 0.230701280703807 (310, 0) 0.230700830274267 (310, 1) -0.425322482493543 (310, 2) -0.173522869330885 (310, 3) 0.408252604610218 (310, 4) -0.262866264324419 (310, 5) -0.262864921843203 (310, 6) 0.408247085956782 (310, 7) 0.173523728124415 (310, 8) -0.425324846938212 (310, 9) -0.230702198844143 (311, 0) 2.30277563734986 (311, 1) 1.61803398865332 (311, 2) 1.3027756375402 (311, 3) 0.999999999941212 (311, 4) 0.618033988690257 (311, 5) -0.618033988683726 (311, 6) -0.999999999902701 (311, 7) -1.30277563753934 (311, 8) -1.61803398869346 (311, 9) -2.30277563735562 (313, 0) 2 (313, 1) 2 (313, 2) 2 (313, 3) 2 (313, 4) 2 (313, 5) 0 (313, 6) 0 (313, 7) 0 (313, 8) 0 (313, 9) 0 (314, 0) 0.999998487142679 (314, 1) 0.554699640206477 (314, 2) 1.73881153146195e-06 (314, 3) -0.169863353992125 (314, 4) -1.9307237657177e-06 (314, 5) 0.0849314620260603 (314, 6) 7.91790300820006e-07 (314, 7) -0.362281725248254 (314, 8) 9.80746224692465e-07 (314, 9) 0.724564246795275 (315, 0) 0.554699640206477 (315, 1) 1.00000110919019 (315, 2) 0.554700791415948 (315, 3) -3.11734741208945e-07 (315, 4) -0.240883241524374 (315, 5) -2.23390387057895e-08 (315, 6) 0.51823340433594 (315, 7) -2.31533019541244e-08 (315, 8) -0.240883256049801 (315, 9) -1.98712586649e-06 (316, 0) 1.73881153146195e-06 (316, 1) 0.554700791415948 (316, 2) 0.999998017266942 (316, 3) 0.724563095978965 (316, 4) 1.1305747474228e-06 (316, 5) -0.362281977542051 (316, 6) -7.52959188807888e-07 (316, 7) 0.0849320266011869 (316, 8) -2.67738059657758e-07 (316, 9) -0.169863684707216 (317, 0) -0.169863353992125 (317, 1) -3.11734741208945e-07 (317, 2) 0.724563095978965 (317, 3) 1.0000014652831 (317, 4) 0.603165833298165 (317, 5) -1.36787218675297e-07 (317, 6) -0.240883863364895 (317, 7) 7.44688539165752e-07 (317, 8) 0.155950962836806 (317, 9) 5.36572674558582e-07 (318, 0) -1.9307237657177e-06 (318, 1) -0.240883241524374 (318, 2) 1.1305747474228e-06 (318, 3) 0.603165833298165 (318, 4) 0.999997204926543 (318, 5) 0.724563265401816 (318, 6) 8.09467449529762e-07 (318, 7) -0.169862428618721 (318, 8) -5.33667340370711e-07 (318, 9) 0.155952144018844 (319, 0) 0.0849314620260603 (319, 1) -2.23390387057895e-08 (319, 2) -0.362281977542051 (319, 3) -1.36787218675297e-07 (319, 4) 0.724563265401816 (319, 5) 1.00000222615556 (319, 6) 0.554700399218222 (319, 7) -1.74799840563759e-06 (319, 8) -0.169864525519006 (319, 9) 1.45124654632036e-06 (320, 0) 7.91790300820006e-07 (320, 1) 0.51823340433594 (320, 2) -7.52959188807888e-07 (320, 3) -0.240883863364895 (320, 4) 8.09467449529762e-07 (320, 5) 0.554700399218222 (320, 6) 0.999998902858198 (320, 7) 0.554699948237408 (320, 8) 1.50110338218608e-06 (320, 9) -0.240882829164587 (321, 0) -0.362281725248254 (321, 1) -2.31533019541244e-08 (321, 2) 0.0849320266011869 (321, 3) 7.44688539165752e-07 (321, 4) -0.169862428618721 (321, 5) -1.74799840563759e-06 (321, 6) 0.554699948237408 (321, 7) 1.00000125128565 (321, 8) 0.724564162168815 (321, 9) -1.97667885261077e-06 (322, 0) 9.80746224692465e-07 (322, 1) -0.240883256049801 (322, 2) -2.67738059657758e-07 (322, 3) 0.155950962836806 (322, 4) -5.33667340370711e-07 (322, 5) -0.169864525519006 (322, 6) 1.50110338218608e-06 (322, 7) 0.724564162168815 (322, 8) 0.999999063885002 (322, 9) 0.603164465117817 (323, 0) 0.724564246795275 (323, 1) -1.98712586649e-06 (323, 2) -0.169863684707216 (323, 3) 5.36572674558582e-07 (323, 4) 0.155952144018844 (323, 5) 1.45124654632036e-06 (323, 6) -0.240882829164587 (323, 7) -1.97667885261077e-06 (323, 8) 0.603164465117817 (323, 9) 1.00000227095086 Sheet: Sheet: Sheet: Sheet: